Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0283718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432967

RESUMO

Understanding soil bacterial diversity under nitrogen reduction is necessary for the crucial role in soil nitrogen cycling. However, the effects of combined fertilization on soil chemical properties, microbial community structure, and yield are unknown. This study was conducted to investigate the effect of nitrogen fertilizer reduction with bio-organic fertilizer on soil bacterial community diversity of red raspberry orchard. Six treatments were set in this study: NF-100%, NF-75%, NF-50%, NF-25% and CF, no nitrogen fertilizer and bio-organic fertilizer for CK. The bacterial community structures of soil were analyzed by 16S rRNA gene amplification high-throughput sequencing technology. Nitrogen fertilizer reduction with bio-organic fertilizer increased soil organic matter (SOM), total nitrogen (TN), alkali-hydrolyzable nitrogen (AN), available phosphorus (AP), available potassium (AK), and reduced soil pH. NF-50% and NF-25% treatments increased the yield of red raspberry. Nitrogen reduction combined with bio-organic fertilizer increased the relative abundance of copiotrophic bacteria and decreased the relative abundance of oligotrophic bacteria. The increase in copiotrophic bacteria in the soil of red raspberry orchard could indicate an increase in soil nutrient availability, which have positive implications for soil fertility and production. However, nitrogen fertilizer reduction with bio-organic fertilizer altered the abundance and diversity of soil bacteria, which was reduced compared to CF treatments. The PCoA analysis of the soil bacterial community showed that the community structure of NF-25% treatment was more different from other treatments, indicating that the fertilization method changed the community structure of soil bacteria. The results of a redundancy analysis showed that SOM, pH, AN, TN, and AP were the main factors affecting the microbial community structure. Overall, the reduction of nitrogen fertilizer with bio-organic fertilizer significantly increased the soil nutrient content, reduced the relative abundance and diversity of soil bacteria, increased the relative abundance of beneficial bacteria in the soil, changed the bacterial community structure of soil, increased production and created suitable soil conditions for the red raspberry growth.


Assuntos
Fertilizantes , Rubus , RNA Ribossômico 16S/genética , Álcalis , Bactérias/genética , Nitrogênio , Fósforo
2.
J Plant Physiol ; 287: 154050, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37441911

RESUMO

Browning is a crucial factor affecting the quality of fresh-cut apples. A safe, simple, and effective method to inhibit browning is urgently needed in fresh-cut apple production. We carried out this study to explore the effect mechanism of exogenous selenium (Se) fertilizer on fresh-cut apple browning. During the development of apples, 0.75 kg/plant Se fertilizer was exerted on the 'Fuji' apple tree at the critical stage of the young fruit stage (late May), early fruit expansion stage (late June), and fruit expansion stage (late July), an equal amount of Se-free organic fertilizer was used as control. Polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) activities, phenolic and malondialdehyde (MDA) content, antioxidant enzymes activity, and DPPH free radical scavenging rate of the apple at different development stages were investigated. The highest Se accumulation efficiency was observed in apple fruit one month after applying Se fertilizer, which was 41.1%. Se-rich apples exhibited a more remarkable ability to resist browning than control after fresh-cut. The anti-browning effect of the fertilization group (M7) was the best, the PPO activity decreased to 0.5 × 103 U kg-1, and the browning index was 28.6. The total Se content (TSC) of 331.4 µg kg-1 DW and organic Se content (OSC) of 292.0 µg kg-1 DW were the highest in the apple samples, reached the classification standard of Se content in Se-rich food. The correlation analysis found that fresh-cut apple browning was closely related to antioxidant capacity and PPO activity. The stronger the antioxidant capacity of fresh-cut apples treated with Se fertilizer, the lower their browning degree. Therefore, exogenous Se can alleviate fresh-cut apples browning by improving antioxidant capacity and reducing PPO activity. Se-rich apples could increase the Se content of the human essential trace element and inhibit the browning of fresh-cut apples, which would become a new, safe and effective way to solve the fresh-cut apples browning.


Assuntos
Malus , Selênio , Humanos , Antioxidantes/farmacologia , Frutas/química , Selênio/farmacologia , Fertilizantes/análise , Catecol Oxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...